Refined instability estimates for some inverse problems
نویسندگان
چکیده
Many inverse problems are known to be ill-posed. The ill-posedness can manifested by an instability estimate of exponential type, first derived Mandache [29]. In this work, based on Mandache's idea, we refine the estimates for two problems, including inclusion problem and scattering problem. Our aim is derive explicitly dependence key parameters.The result work show how depends depth hidden conductivity background medium. This regarded as a counterpart depth-dependent conductivity-dependent stability proved Li, Wang, Wang [28], or pure dependent Nagayasu, Uhlmann, [31]. We rigorously justify intuition that becomes worse deeper inside conductor larger.The second optimality increasing in determining near-field radiating solution Helmholtz equation from far-field pattern. Isakov [16] showed increases frequency sense changes logarithmic type Hölder type. prove increases. inspired our recent [25].
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Reconstructions for some coupled-physics inverse problems
This letter announces and summarizes results obtained in [8] and considers several natural extensions. The aforementioned paper proposes a procedure to reconstruct coefficients in a second-order, scalar, elliptic equation from knowledge of a sufficiently large number of its solutions. We present this derivation and extend it to show which parameters may or may not be reconstructed for several h...
متن کاملFréchet Derivatives for Some Bilinear Inverse Problems
In many inverse problems a functional of u is given by measurements where u solves a partial differential equation of the type L(p)u + Su = q. Here, q is a known source term and L(p), S are operators with p as unknown parameter of the inverse problem. For the numerical reconstruction of p often the heuristically derived Fréchet derivative R′ of the mapping R : p → ’measurement functional of u’ ...
متن کاملStability of Solutions for Some Inverse Problems
In this article we establish three stability results for some inverse problems. More precisely we consider the following boundary value problem: ∆u + λu + μ = 0 in Ω, u = 0 on ∂Ω, where λ and μ are real constants and Ω ⊂ R2 is a smooth bounded simply-connected open set. The inverse problem consists in the identification of λ and μ from knowledge of the normal flux ∂u/∂ν on ∂Ω corresponding to s...
متن کاملError estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales
In this paper we consider some Newton-type methods in Hilbert scales to solve nonlinear inverse problems. Under certain conditions we obtain the error estimates when the iteration is terminated in an a posteriori manner. Finally we present the numerical examples to verify the theoretical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems and Imaging
سال: 2022
ISSN: ['1930-8345', '1930-8337']
DOI: https://doi.org/10.3934/ipi.2022017